VaR.Beyond {PerformanceAnalytics} | R Documentation |
Beyond VaR purports to estimate average loss beyond VaR. Please note that your milage will vary; expect that values obtained from the normal distribution differs radically from the real situation.
BeyondVaR is described in theoretical detail in the paper: Gaussel, N., Legras, J., Longin, F., and Rabemananjara, R. "Beyond the VaR Horizon" 2001, Quants Review No. 37
VaR.Beyond(R, p=.95, modified=FALSE, add=FALSE, periods = 1)
R |
a vector, matrix, data frame, timeSeries or zoo object of asset returns |
p |
confidence level for calculation, default p=.99 |
modified |
TRUE/FALSE default FALSE, use Cornish Fisher Expansion to take higher moments into account |
add |
TRUE/FALSE default FALSE, add VaR to BeyondVaR value for total predicted loss, like CVaRplus |
periods |
number of periods to calculate predicted loss beyond the VaR for, default 1 |
We believe that the extension of Cornish-Fisher VaR as an option in the Beyond VaR calculation is unique to this library.
estimated Value of single period loss Beyond traditional mean-VaR
Peter Carl
Brian G. Peterson
Gaussel, N., Legras, J., Longin, F., and Rabemananjara, R. "Beyond the VaR Horizon" 2001, Quants Review No. 37
VaR.CornishFisher
VaR.traditional
CVaR
CVaRplus
data(edhec) # first do normal Beyond VaR calc VaR.Beyond(edhec) # now use modified Cornish-Fisher VaR calc to take non-normal distribution into account VaR.Beyond(edhec,modified=TRUE)